BASIC CONCEPTS

Dr. Mokhtar Said

Electric Circuit

> An electric circuit is an interconnection of electrical elements.

Units and prefixes

- When taking measurements, we must use units to quantify values.
- > We use the International Systems of Units (SI).
- Prefixes on SI units allow for easy relationships between large and small values

The SI Units

Quantity	Basic unit	Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	S
Electric current	ampere	А
Thermodynamic temperature	kelvin	K
Luminous intensity	candela	cd
Charge	coulomb	С

The SI Prefixes

Multiplier	Prefix	Symbol
10^{18}	exa	Е
10^{15}	peta	Р
10^{12}	tera	Т
10 ⁹	giga	G
10^{6}	mega	Μ
10^{3}	kilo	k
10^{2}	hecto	h
10	deka	da
10^{-1}	deci	d
10^{-2}	centi	с
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	р
10^{-15}	femto	f
10^{-18}	atto	а

Charge

- The most basic quantity in an electric circuit is the electric charge.
- Charge is a basic SI unit, measured in Coulombs (C)
- We also know that the charge e on an electron is negative and equal in magnitude to 1.602*10⁻¹⁹ C
- One Coulomb is quite large, 6.24*10¹⁸ electrons.

Charge

- While a proton carries a positive charge of the same magnitude as the electron.
- The charge of any number (N) of electron or proton = N * electron (proton) charge.

How much charge is represented by 4,600 electrons?

Solution:

Each electron has -1.602×10^{-19} C. Hence 4,600 electrons will have

 -1.602×10^{-19} C/electron \times 4,600 electrons = -7.369×10^{-16} C

Current

> The movement of charge is called a current.

Electric current is the time rate of change of charge, measured in amperes (A).

Current

The relationship between current *i*, charge *q*, and time *t* is:

$$i \equiv \frac{dq}{dt}$$

where current is measured in amperes (A), and 1 ampere = 1 coulomb/second

The charge transferred between time t0 and *t* is obtained by integrating both sides

$$Q \triangleq \int_{t_0}^t i \, dt$$

Current

A direct current (dc) is a current that remains constant with time.

An alternating current (ac) is a current that varies sinusoidal with time.

The total charge entering a terminal is given by $q = 5t \sin 4\pi t$ mC. Calculate the current at t = 0.5 s.

Solution:

$$i = \frac{dq}{dt} = \frac{d}{dt}(5t\sin 4\pi t) \text{ mC/s} = (5\sin 4\pi t + 20\pi t\cos 4\pi t) \text{ mA}$$

At $t = 0.5$,
 $i = 5\sin 2\pi + 10\pi\cos 2\pi = 0 + 10\pi = 31.42 \text{ mA}$

Determine the total charge entering a terminal between t = 1 s and t = 2 s if the current passing the terminal is $i = (3t^2 - t)$ A.

Solution:

$$Q = \int_{t=1}^{2} i \, dt = \int_{1}^{2} (3t^2 - t) \, dt$$
$$= \left(t^3 - \frac{t^2}{2}\right)\Big|_{1}^{2} = (8 - 2) - \left(1 - \frac{1}{2}\right) = 5.5 \text{ C}$$

Voltage

The voltage between two points a and b in an electric circuit is the energy (or work) needed to move a unit charge from a to b.

$$v_{ab} \triangleq \frac{dw}{dq}$$

where w is energy in joules (J) and q is charge in coulombs (C). The voltage v_{ab} or simply v is measured in volts (V), named in honor of

Power

Power is the time rate of expending or absorbing energy, measured in watts (W).

$$P = \frac{dW}{dt}$$

where p is power in watts (W), w is energy in joules (J), and t is time in seconds (s).

$$\mathbf{P} = \frac{dw}{dt} = \frac{dw}{dt} \times \frac{dq}{dq} = \frac{dw}{dq} * \frac{dq}{dt} = vt$$

$$w = \int_{t_0}^t p \, dt = \int_{t_0}^t v i \, dt$$

Power

- The power absorbed or supplied by an element is the product of the voltage across the element and the current through it.
- If the power has a + sign, power is being delivered to or absorbed by the element.
- If the power has a sign, power is being supplied by or delivered from the element.
- Current direction and voltage polarity play a major role in determining the sign of power.

Power

Passive sign convention is satisfied when the current enters through the positive terminal of an element and p = +vi. If the current enters through the negative terminal, p = -vi.

Figure 1.8

Reference polarities for power using the passive sign convention: (a) absorbing power, (b) supplying power.

An energy source forces a constant current of 2 A for 10 s to flow through a light bulb. If 2.3 kJ is given off in the form of light and heat energy, calculate the voltage drop across the bulb.

Solution:

The total charge is

$$\Delta q = i \Delta t = 2 \times 10 = 20 \,\mathrm{C}$$

The voltage drop is

$$v = \frac{\Delta w}{\Delta q} = \frac{2.3 \times 10^3}{20} = 115 \text{ V}$$

Find the power delivered to an element at t = 3 ms if the current entering its positive terminal is

$$i = 5 \cos 60 \pi t A$$

and the voltage is: (a) v = 3i, (b) $v = 3 \frac{di}{dt}$.

Solution:

(a) The voltage is $v = 3i = 15 \cos 60 \pi t$; hence, the power is

$$p = vi = 75\cos^2 60\pi t \,\mathrm{W}$$

At t = 3 ms,

 $p = 75 \cos^2 (60 \pi \times 3 \times 10^{-3}) = 75 \cos^2 0.18 \pi = 53.48 \text{ W}$

(b) We find the voltage and the power as

$$v = 3\frac{di}{dt} = 3(-60\pi)5\sin 60\pi t = -900\pi\sin 60\pi t V$$
$$p = vi = -4500\pi\sin 60\pi t\cos 60\pi t W$$

At t = 3 ms,

$$p = -4500 \pi \sin 0.18 \pi \cos 0.18 \pi W$$

= -14137.167 sin 32.4° cos 32.4° = -6.396 kW

Circuit Sources

Independent Source: provides a specified voltage or current that is completely independent of other circuit variables.

Independent Voltage Source:

Independent current source:

Circuit Sources

dependent Source: provides a specified voltage or current that is completely dependent on other circuit variables.

dependent Voltage Source: dependent current source:

Circuit Elements

- There are four possible types of dependent sources, namely:
 - A voltage-controlled voltage source (VCVS).
 A current-controlled voltage source (CCVS).
 A voltage-controlled current source (VCCS).
 A current-controlled current source (CCCS).

> Calculate the power supplied or absorbed by each element. $I = 5 A P_2$

